RMixtComp: Mixture Models with Heterogeneous and (Partially) Missing Data

Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. It includes 8 models for real, categorical, counting, functional and ranking data.

Version: 4.1.0
Depends: R (≥ 2.10), RMixtCompUtilities (≥ 4.1.0)
Imports: RMixtCompIO, ggplot2, plotly, scales
Suggests: testthat, xml2, Rmixmod, blockcluster, knitr
Published: 2020-01-07
Author: Vincent Kubicki [aut], Christophe Biernacki [aut], Quentin Grimonprez [aut, cre], Matthieu Marbac-Lourdelle [ctb], √Čtienne Goffinet [ctb], Serge Iovleff [ctb]
Maintainer: Quentin Grimonprez <quentin.grimonprez at inria.fr>
BugReports: https://github.com/modal-inria/MixtComp/issues
License: AGPL-3
Copyright: Inria - Université de Lille - CNRS
URL: https://github.com/modal-inria/MixtComp, https://massiccc.lille.inria.fr/
NeedsCompilation: no
Materials: NEWS
In views: MissingData
CRAN checks: RMixtComp results

Downloads:

Reference manual: RMixtComp.pdf
Vignettes: Data Format
MixtComp Object
Package source: RMixtComp_4.1.0.tar.gz
Windows binaries: r-devel: RMixtComp_4.1.0.zip, r-release: RMixtComp_4.1.0.zip, r-oldrel: RMixtComp_4.1.0.zip
macOS binaries: r-release: RMixtComp_4.1.0.tgz, r-oldrel: RMixtComp_4.1.0.tgz
Old sources: RMixtComp archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RMixtComp to link to this page.