Package ‘hybridHclust’

July 22, 2015
Title Hybrid Hierarchical Clustering
Version 1.0-5
Date 2015-07-21
Author Hugh Chipman, Rob Tibshirani, with tsvq code originally from Trevor Hastie

Description Hybrid hierarchical clustering via mutual clusters. A mutual clus-
ter is a set of points closer to each other than to all other points. Mutual clusters are used to en-
rich top-down hierarchical clustering.

Maintainer Hugh Chipman <hugh.chipman@acadiau.ca>
Imports cluster, stats

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-22 12:37:37

R topics documented:

eisenCluster e e e e 2
get.diStances L L. e e 3
hybridHeclust 4
mutualCIuster e e e e e e e e e e e 5
print.mutualCluster 7
sorlie e e e 8
sorlielabels e 8
TSV - o o e e e e 9
Index 11

2 eisenCluster

eisenCluster An implementation of Eisen’s hierarchical clustering

Description
Bottom-up clustering in which each cluster is represented by the mean vector for observations in
the cluster.

Usage

eisenCluster(x, method, compatible = TRUE, verbose = FALSE)

Arguments
X Data matrix, whose rows we wish to cluster
method How should distance between points (and centres) be calculated? Choices in-
clude “euclidean”,“squared.euclidean”, “correlation”,“uncentered.correlation”.
For “euclidean” and “squared.euclidean”, unexpected behaviour can result, since
data points are replaced by their cluster centres, the overall variance in the data
will decrease.
compatible Flag for whether cluster merging should be done as in Eisen’s cluster algorithm.
If compatible=TRUE, then when two clusters are merged, a weighted average of
the mean vectors for each of the two clusters is used. If compatible=F, then the
original data are averaged to obtain the new centre. When x does not contain
missing values, these two options generate the same result. If there are missing
values, they will differ. Using the original data makes more sense when there are
missing values, since the weights won’t account for the missing value pattern.
verbose Prints iteration number if TRUE
Details
The main difference between this algorithm and hclust(...,method="'centroid") is the manner

in which missing values are handled. Here, original rows are merged at each step, taking means
after omitting missing observations.

Missing values are permitted, and can be handled in the same manner as in Eisen’s package. This
is perhaps the main reason the current implementation might be used: to reproduce the clusterings
found from Eisen’s code when there are missing values. When two clusters are merged, missing
values can be handled in two ways (controlled by the compatible flag): (1) new cluster centres
can be calculated using means of all original observations in the clusters, or (2) new cluster centres
can be calculated using a weighted average of the means of the two clusters being joined. Although
Eisen’s cluster software uses (2), it seems less desirable in situations where observations are missing
in some dimensions only, since the presence of missing values will cause the wrong weights to be
used when updating centres. Subsequent averaging of clusters centres will ignore the missingness
patterns in the cluster means. Option (2) is included to enable clusters identical to Eisen’s to be
produced.

get.distances 3

Value

A hclust object. The definition of distance between 2 clusters as the distance between their means
can result in a non-monotone dendrogram (e.g., if A, B, C are vertices of an equilateral triangle with
side lengths 1, A joins B at distance 1, then C joins AB at distance 0.866). Non-monotone distances
are coerced to be monotone before the object is returned. This can yeild dendrograms which seem
to join more than 2 points at one height.

The “trueheight” component contains actual heights before they were forced to be monotone.

Author(s)

Hugh Chipman

Examples

set.seed(101)

X <- matrix(rnorm(500),5,100)

x <= rbind(x,x[rep(1,4),]+matrix(rnorm(400),4,100))

X <= rbind(x,x[2:5,]+matrix(rnorm(400),4,100))

par(mfrow=c(1,2))

image(1-cor(t(x)),main="'correlation distances',zlim=c(@,2),col=gray(1:100/101))
el <- eisenCluster(x, 'correlation')

plot(el)

get.distances Extract Distances From Mutual Cluster

Description

Extract the within-cluster distances for each mutual cluster

Usage

get.distances(x)

Arguments

X An object of class ‘mutualCluster’, returned by the ‘mutualCluster’ function.

Value

A list of distances. For mutual custers of size 2, the corresponding element is a 1x1 matrix. For
larger mutual custers, the corresponding element is an object of type ‘dist’.

See Also

mutualCluster,print.mutual Cluster

4 hybridHclust

Examples

X <- cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),
c(-0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

mcl <- mutualCluster(x)

get.distances(mc1)

hybridHclust Hybrid hierarchical clustering using mutual clusters.

Description

Top-down clustering (tsvq) is applied to data with constraint that mutual clusters cannot be divided.
Within each mutual cluster, tsvq is re-applied to yeild a top-down hybrid in which mutual cluster
structure is retained.

Usage
hybridHclust(x, themc=NULL, trace=FALSE)

Arguments
X A data matrix whose rows are to be clustered
themc An object representing the mutual clusters in x, typically generated by mutualCluster.
If it is not provided, it will be calculated.
trace Should internal steps be printed as they execute?
Details

A mutual cluster is a set of points that should never be broken (see help for ‘mutualCluster’ for a
more precise definition). hybridHcclust uses this idea to construct a top-down clustering in which
mutual clusters are never broken. This is achieved by temporarily “fusing” together all points in a
mutual cluster so that they have equal coordinates, running tsvq, and then re-running tsvq within
each mutual cluster. The resultant top-down clusterings are then “stitched” together to form a single
top-down clustering.

Only maximal mutual clusters are constrained to not be broken. Thus if points A, B, C, D are a
mutual cluster and points A, B are also a mutual cluster, only the four points will be forbidden from
being broken.

Because hybridHclust uses tsvq to build the hierarchical clusterings, it is implicitly using squared
Euclidean distance between rows of Xx. In some instances (especially for microarray data), a desir-
able distance measure is d(x1,x2)=1-cor(x1,x2), if x1 and x2 are 2 rows of the matrix x. This
correlation-based distance is equivalent to squared Euclidean distance once rows have been scaled
to have mean 0 and standard deviation 1. This can be accomplished by pre-processing x before
calling hybridHclust. An example is provided below.

Value

A dendrogram in hclust format.

mutualCluster 5

Author(s)

Hugh Chipman

References

Chipman, H. and Tibshirani, R. (2006) "Hybrid Hierarchical Clustering with Applications to Mi-
croarray Data", Biostatistics, 7, 302-317.

See Also

tsvq, “hopach” package

Examples

x <- cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),
c(-0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

hyb1 <- hybridHclust(x)

par(mfrow=c(1,2))

plot(x, pch = as.character(1:nrow(x)), asp = 1)

plot(hyb1)

also works

mcl <- mutualCluster(x)

mc1

(3,7) and (1,4) are the two mutual clusters
hyb1 <- hybridHclust(x,mc1)

print('example on sorlie data, may take up to a minute to run')
data(sorlie)

x.scaled <- t(sorlie)

We take the transpose of "sorlie"” because we want to cluster tissue

samples. Tissue samples are columns of "sorlie” and hybridHclust will
cluster rows.

for (i in 1:nrow(x.scaled))

x.scaled[i,] <- (sorlie[,i]l-mean(sorlie[,i]))/sd(sorlie[,i])
Scale the rows of x.scaled matrix. This will mean that squared Euclidean
distance used by hybridHclust will be equivalent to correlation distance.

hhc1 <- hybridHclust(x.scaled,trace=TRUE)
plot(hhc1,labels=dimnames(x.scaled)[[1]1])

print('\n\n run demo(hybridHclust) for a more complete package demonstration')

mutualCluster Find mutual clusters

Description

Using bottom-up hierarchical clustering, find the set of maximal mutual clusters.

6 mutualCluster

Usage

mutualCluster(x, distances, method = "average"”, plot = FALSE)

Arguments
X Data matrix, the rows of which we wish to cluster
distances Distances between objects to be clustered. This may be a symmetric matrix or
a object produced by dist. Note that only one of distances and x should be
provided.
method Does not affect mutual clusters returned by mutualCluster. Method used in
hclust to join clusters. Must be one of “single”, “complete” or “average”. This
option only affects the plotting, since all 3 methods give the same mutual clus-
ters.
plot Flag indicating whether the dendrogram for bottom-up clustering should be dis-
played.
Details

A mutual cluster is a group of points such that the largest distance between any pair in the group is
smaller than the shortest distance to any point outside the group.

This function relies on the fact that bottom-up clustering with average, single, or complete linkage
cannot break a mutual cluster. That is, when agglomerating, these clustering methods will never
add points outside the mutual cluster before first joining all points inside the mutual cluster.

The function mutualCluster is primarily a wrapper that first performs a bottom-up clustering,
and then uses this information to identify the mutual clusters. The utility functions that make up
mutualCluster are listed under “See Also:” and can be used separately on a hclust object for
finer control.

Value

A list of mutual clusters. Each component of the list is a vector of observation indices corresponding
to one mutual cluster. Only the maximal mutual clusters are returned, so if observations 1 and 2
form a MC, and observations 1, 2, 4 also form a MC, then a vector with elements 1, 2, 4 will be
returned.

Author(s)

Hugh Chipman

References

Chipman, H. and Tibshirani, R. (2006) "Hybrid Hierarchical Clustering with Applications to Mi-
croarray Data", Biostatistics, 7, 302-317.

print.mutualCluster

Examples

x <- cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),
c(-0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

par(mfrow=c(1,2))

plot(x,pch=as.character(1:nrow(x)),asp=1) # show data

dist(x) # you can verify that mc's are correct

mutualCluster(x,plot=TRUE) # find MCs and indicate them in dendrogram plot

print.mutualCluster Printing Mutual Cluster Objects

Description

Print method for mutual cluster objects.

Usage
S3 method for class 'mutualCluster'’
print(x, ...)
Arguments
X Object of class ‘mutualCluster’
Additional arguments to ‘print’ (currently ignored).
See Also

get.distances,mutualCluster

Examples

X <- cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),
c(-0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

mcl <- mutualCluster(x)

print(mc1)

8 sorlielabels

sorlie Gene expression data for breast cancer tumors

Description

Gene expression levels of 456 genes for 85 tissue samples. The original data had missing values
scattered throughout the matrix. 10-nearest neighbours was used for imputation, as described in
Chipman, Hastie and Tibshirani (2003).

Usage

data(sorlie)

Format

A matrix with 456 rows and 85 columns.

References

Sorlie, T. et. al. (2001) "Gene expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications", PNAS, 98, 10969-74

Chipman, H., Hastie, T, and Tibshirani, R. (2003) ‘Clustering Microarray Data’ in Statistical Anal-
ysis of Gene Expression Microarray Data, Terry Speed, Editor, Chapman and Hall, CRC press.

sorlielabels Cluster labels for sorlie data

Description

In Sorlie et. al. (2001), M. Eisen’s cluster software was used to cluster the 85 samples into 5 groups.
These labels contained in the vector sorlie.labels. The naming of the five clusters is as follows:

1: basal-like (14 observations) 2: ERBB2+ (11 observations) 3: Normal (13 observations) 4: Lum-
nial B/C (15 observations) 5: Luminal A (32 observations)
Usage

data(sorlielabels)

Format

A vector with 456 elements.

References

Sorlie, T. et. al. (2001) "Gene expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications", PNAS, 98, 10969-74

tsvq 9

tsvq Tree Structured Vector Quantization

Description

Construct a top-down hierarchical clustering, recursively using k-means with k=2 (kmeans is also
known as “vector quantization”).

Usage

tsvq(x, K=nrow(x), row.labs=1:nrow(x),ntry=20,verbose=FALSE,as.hclust=TRUE, trace=FALSE)
tsvg2hclust(obj)

Arguments
X A data matrix whose rows (i.e., observations) are to be clustered
K The number of terminal nodes that the tree should have. This must be less than
or equal the number of rows of x. If the number of rows of x is used, then the
resultant tree will have one data point in each terminal node of the tree.
row. labs Observation labels. Must be numeric in tsvq for tsvg2hclust to function.
ntry The number of attempts of 2-means used to subdivide each node into two chil-
dren. For each attempt, two data points are randomly selected as initial centres.
Since 2-means cannot guarantee a globally optimal partition into 2 clusters, mul-
tiple tries often will improve the quality of the clustering.
verbose Should details of the growing be printed?
as.hclust Should the tree be returned as a hclust object? This option is provided because
the hybridHclust function needs the tsvq output in raw form at an intermediate
step.
obj an object created by tsvq
trace Flag indicating brief iteration count should be printed. Useful for large problems
to indicate status.
Details

To construct a top-down hierarchical clustering, the data must be recursively subdivided into two
clusters. 2-means is used to find a "good" (but seldom optimal) subdivision. Multiple restarts of
kmeans tend to increase the quality of the clustering. Because random seeds are used to select initial
centres, two different runs of tsvq are not guaranteed to produce an identical clustering.

The use of k-means implies that the top-down clustering is trying to minimize with-cluster sums of
squared Euclidean distances.

10 tsvq

Value

If as.hclust=FALSE, then tsvq will return a list that recursively represents the tree structure. If
as.hclust=TRUE, an object compatible with hclust is returned. Methods such as plot and cutree
can be applied to hclust objects.

The helper function tsvg2hclust will convert a tsvq object to hclust format.

Author(s)

Hugh Chipman; Trevor Hastie wrote the original tsvq code

See Also
hybridHclust

Examples

x <= cbind(c(-1.4806,1.5772,-0.9567,-0.92,-1.9976,-0.2723,-0.3153),
c(-0.6283,-0.1065,0.428,-0.7777,-1.2939,-0.7796,0.012))

t1 <- tsvq(x)

par(mfrow=c(1,2))

plot(x,pch=as.character(1:nrow(x)),asp=1)

plot(t1)

cbind(x,cutree(t1,2))

below also works although you don't need to do it this way.

t2 <- tsvq(x,as.hclust=FALSE)

t2 <- tsvg2hclust(t2)

Index

xTopic cluster
eisenCluster, 2
get.distances, 3
hybridHclust, 4
mutualCluster, 5
print.mutualCluster, 7
tsvq, 9

xTopic datasets
sorlie, 8
sorlielabels, 8

eisenCluster, 2
get.distances, 3
hybridHclust, 4
mutualCluster, 5
print.mutualCluster, 7

sorlie, 8
sorlielabels, 8

tsvq, 9
tsvg2hclust (tsvq), 9

11

	eisenCluster
	get.distances
	hybridHclust
	mutualCluster
	print.mutualCluster
	sorlie
	sorlielabels
	tsvq
	Index

