
Package ‘metacoder’
July 18, 2019

Title Tools for Parsing, Manipulating, and Graphing Taxonomic
Abundance Data

Version 0.3.3

Maintainer Zachary Foster <zacharyfoster1989@gmail.com>

Description A set of tools for parsing, manipulating, and graphing data
classified by a hierarchy (e.g. a taxonomy).

Depends R (>= 3.0.2), taxa

License GPL-2 | GPL-3

LazyData true

URL https://grunwaldlab.github.io/metacoder_documentation/

BugReports https://github.com/grunwaldlab/metacoder/issues

Imports stringr, ggplot2, igraph, scales, grid, taxize, seqinr,
reshape2, zoo, traits, RColorBrewer, RCurl, ape, reshape,
stats, grDevices, utils, lazyeval, dplyr, magrittr, readr,
rlang, biomformat, phylotate, ggfittext, vegan, ggrepel,
cowplot, GA, Rcpp, crayon, svglite, viridisLite, tibble

Suggests knitr, rmarkdown, testthat, zlibbioc, BiocManager, phyloseq

VignetteBuilder knitr

RoxygenNote 6.1.1

Date 2019-07-17

Encoding UTF-8

biocViews
LinkingTo Rcpp

NeedsCompilation yes

Author Zachary Foster [aut, cre],
Niklaus Grunwald [ths],
Rob Gilmore [ctb]

Repository CRAN

Date/Publication 2019-07-18 06:35:33 UTC

1

2 R topics documented:

R topics documented:
as_phyloseq . 2
calc_group_mean . 3
calc_group_median . 5
calc_group_rsd . 6
calc_group_stat . 8
calc_n_samples . 10
calc_obs_props . 12
calc_prop_samples . 14
compare_groups . 16
complement . 18
counts_to_presence . 19
diverging_palette . 20
filter_ambiguous_taxa . 21
heat_tree . 22
heat_tree_matrix . 30
hmp_otus . 32
hmp_samples . 32
is_ambiguous . 33
layout_functions . 34
make_dada2_asv_table . 35
make_dada2_tax_table . 35
metacoder . 36
ncbi_taxon_sample . 38
parse_dada2 . 39
parse_greengenes . 41
parse_mothur_taxonomy . 42
parse_mothur_tax_summary . 43
parse_newick . 44
parse_phylo . 45
parse_phyloseq . 45
parse_qiime_biom . 47
parse_rdp . 48
parse_silva_fasta . 49
parse_ubiome . 50
parse_unite_general . 51
primersearch . 52
primersearch_raw . 55
qualitative_palette . 58
quantative_palette . 59
rarefy_obs . 59
read_fasta . 61
reverse . 62
rev_comp . 62
write_greengenes . 63
write_mothur_taxonomy . 64
write_rdp . 65

as_phyloseq 3

write_silva_fasta . 66
write_unite_general . 67
zero_low_counts . 68

as_phyloseq Convert taxmap to phyloseq

Description

Convert a taxmap object to a phyloseq object.

Usage

as_phyloseq(obj, otu_table = NULL, otu_id_col = "otu_id",
sample_data = NULL, sample_id_col = "sample_id", phy_tree = NULL)

Arguments

obj The taxmap object.

otu_table The table in ‘obj$data‘ with OTU counts. Must be one of the following:

NULL Look for a table named "otu_table" in ‘obj$data‘ with taxon IDs, OTU
IDs, and OTU counts. If it exists, use it.

character The name of the table stored in ‘obj$data‘ with taxon IDs, OTU
IDs, and OTU counts

data.frame A table with taxon IDs, OTU IDs, and OTU counts
FALSE Do not include an OTU table, even if "otu_table" exists in ‘obj$data‘

otu_id_col The name of the column storing OTU IDs in the otu table.

sample_data A table containing sample data with sample IDs matching column names in the
OTU table. Must be one of the following:

NULL Look for a table named "sample_data" in ‘obj$data‘. If it exists, use it.
character The name of the table stored in ‘obj$data‘ with sample IDs
data.frame A table with sample IDs
FALSE Do not include a sample data table, even if "sample_data" exists in

‘obj$data‘
sample_id_col

The name of the column storing sample IDs in the sample data table.

phy_tree A phylogenetic tree of class phylo from the ape package with tip labels
matching OTU ids. Must be one of the following:

NULL Look for a tree named "phy_tree" in ‘obj$data‘ with tip labels matching
OTU ids. If it exists, use it.

character The name of the tree stored in ‘obj$data‘ with tip labels matching
OTU ids.

phylo A tree with tip labels matching OTU ids.
FALSE Do not include a tree, even if "phy_tree" exists in ‘obj$data‘

4 calc_group_mean

Examples

Not run:
Install phyloseq to get example data
source('http://bioconductor.org/biocLite.R')
biocLite('phyloseq')

Parse example dataset
library(phyloseq)
data(GlobalPatterns)
x <- parse_phyloseq(GlobalPatterns)

Convert back to a phylseq object
as_phyloseq(x)

End(Not run)

calc_group_mean Calculate means of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return row means in
a table.

Usage

calc_group_mean(obj, data, groups, cols = NULL, other_cols = FALSE,
out_names = NULL, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

calc_group_mean 5

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_median, calc_group_rsd, calc_group_stat, calc_n_samples,
calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the means for each group
calc_group_mean(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_mean(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_mean(x, "tax_data", groups = hmp_samples$sex,

6 calc_group_median

out_names = c("Women", "Men"))

End(Not run)

calc_group_median Calculate medians of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return row medians
in a table.

Usage

calc_group_median(obj, data, groups, cols = NULL, other_cols = FALSE,
out_names = NULL, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

calc_group_rsd 7

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_rsd, calc_group_stat, calc_n_samples,
calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the medians for each group
calc_group_median(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_median(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_median(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

End(Not run)

calc_group_rsd Relative standard deviations of groups of columns

Description

For a given table in a taxmap object, split columns by a grouping factor and return the relative
standard deviation for each row in a table. The relative standard deviation is the standard deviation
divided by the mean of a set of numbers. It is useful for comparing the variation when magnitude
of sets of number are very different.

8 calc_group_rsd

Usage

calc_group_rsd(obj, data, groups, cols = NULL, other_cols = FALSE,
out_names = NULL, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_stat, calc_n_samples,
calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

calc_group_stat 9

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate the RSD for each group
calc_group_rsd(x, "tax_data", hmp_samples$sex)

Use only some columns
calc_group_rsd(x, "tax_data", hmp_samples$sex[4:20],

cols = hmp_samples$sample_id[4:20])

Including all other columns in ouput
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = 2)
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_rsd(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

End(Not run)

calc_group_stat Apply a function to groups of columns

Description

For a given table in a taxmap object, apply a function to rows in groups of columns. The result of
the function is used to create new columns. This is equivalent to splitting columns of a table by a
factor and using apply on each group.

Usage

calc_group_stat(obj, data, func, groups = NULL, cols = NULL,
other_cols = FALSE, out_names = NULL, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

10 calc_group_stat

func The function to apply. It should take a vector and return a single value. For
example, max or mean could be used.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_n_samples,
calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Apply a function to every value without grouping
calc_group_stat(x, "tax_data", function(v) v > 3)

calc_n_samples 11

Calculate the means for each group
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex)

Calculate the variation for each group
calc_group_stat(x, "tax_data", sd, groups = hmp_samples$body_site)

Different ways to use only some columns
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = c("700035949", "700097855", "700100489"))
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = 4:6)
calc_group_stat(x, "tax_data", function(v) v > 3,

cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = TRUE)

Inlcuding specific columns in output
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = 2)
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

other_cols = "otu_id")

Rename output columns
calc_group_stat(x, "tax_data", mean, groups = hmp_samples$sex,

out_names = c("Women", "Men"))

End(Not run)

calc_n_samples Count the number of samples

Description

For a given table in a taxmap object, count the number of samples (i.e. columns) with greater than
a minimum value.

Usage

calc_n_samples(obj, data, cols = NULL, groups = "n_samples",
other_cols = FALSE, out_names = NULL, drop = FALSE,
more_than = 0, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

12 calc_n_samples

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

drop If groups is not used, return a vector of the results instead of a table with one
column.

more_than A sample must have greater than this value for it to be counted as present.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Count samples with at least one read

calc_obs_props 13

calc_n_samples(x, data = "tax_data")

Count samples with at least 5 reads
calc_n_samples(x, data = "tax_data", more_than = 5)

Return a vector instead of a table
calc_n_samples(x, data = "tax_data", drop = TRUE)

Only use some columns
calc_n_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])

Return a count for each treatment
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site)

Rename output columns
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site,

out_names = c("A", "B", "C", "D", "E"))

Preserve other columns from input
calc_n_samples(x, data = "tax_data", other_cols = TRUE)
calc_n_samples(x, data = "tax_data", other_cols = 2)
calc_n_samples(x, data = "tax_data", other_cols = "otu_id")

End(Not run)

calc_obs_props Calculate proportions from observation counts

Description

For a given table in a taxmap object, convert one or more columns containing counts to propor-
tions. This is meant to be used with counts associated with observations (e.g. OTUs), as opposed to
counts that have already been summed per taxon.

Usage

calc_obs_props(obj, data, cols = NULL, groups = NULL,
other_cols = FALSE, out_names = NULL, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use

14 calc_obs_props

Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_prop_samples, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Calculate proportions for all numeric columns
calc_obs_props(x, "tax_data")

Calculate proportions for a subset of columns
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
calc_obs_props(x, "tax_data", cols = 4:6)
calc_obs_props(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
calc_obs_props(x, "tax_data", other_cols = TRUE)

calc_prop_samples 15

Inlcuding specific columns in output
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

other_cols = 2:3)

Rename output columns
calc_obs_props(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

Get proportions for groups of samples
calc_obs_props(x, "tax_data", groups = hmp_samples$sex)
calc_obs_props(x, "tax_data", groups = hmp_samples$sex,

out_names = c("Women", "Men"))

End(Not run)

calc_prop_samples Calculate the proportion of samples

Description

For a given table in a taxmap object, calculate the proportion of samples (i.e. columns) with
greater than a minimum value.

Usage

calc_prop_samples(obj, data, cols = NULL, groups = "prop_samples",
other_cols = FALSE, out_names = NULL, drop = FALSE,
more_than = 0, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

16 calc_prop_samples

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

drop If groups is not used, return a vector of the results instead of a table with one
column.

more_than A sample must have greater than this value for it to be counted as present.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_obs_props, calc_taxon_abund, compare_groups, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Count samples with at least one read
calc_prop_samples(x, data = "tax_data")

Count samples with at least 5 reads
calc_prop_samples(x, data = "tax_data", more_than = 5)

Return a vector instead of a table
calc_prop_samples(x, data = "tax_data", drop = TRUE)

Only use some columns
calc_prop_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])

Return a count for each treatment
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site)

compare_groups 17

Rename output columns
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site,

out_names = c("A", "B", "C", "D", "E"))

Preserve other columns from input
calc_prop_samples(x, data = "tax_data", other_cols = TRUE)
calc_prop_samples(x, data = "tax_data", other_cols = 2)
calc_prop_samples(x, data = "tax_data", other_cols = "otu_id")

End(Not run)

compare_groups Compare groups of samples

Description

Apply a function to compare data, usually abundance, from pairs of treatments/groups. By default,
every pairwise combination of treatments are compared. A custom function can be supplied to
perform the comparison. The plotting function heat_tree_matrix is useful for visualizing
these results.

Usage

compare_groups(obj, data, cols, groups, func = NULL,
combinations = NULL, other_cols = FALSE, dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj that contains data for each sample in columns.

cols The names/indexes of columns in data to use. By default, all numeric columns
are used. Takes one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

groups A vector defining how samples are grouped into "treatments". Must be the same
order and length as cols.

func The function to apply for each comparison. For each row in data, for each com-
bination of groups, this function will receive the data for each treatment, passed
as two vectors. Therefore the function must take at least 2 arguments corre-
sponding to the two groups compared. The function should return a vector or list
of results of a fixed length. If named, the names will be used in the output. The
names should be consistent as well. A simple example is function(x,y)
mean(x) -mean(y). By default, the following function is used:

18 compare_groups

function(abund_1, abund_2) {
log_ratio <- log2(median(abund_1) / median(abund_2))
if (is.nan(log_ratio)) {

log_ratio <- 0
}
list(log2_median_ratio = log_ratio,

median_diff = median(abund_1) - median(abund_2),
mean_diff = mean(abund_1) - mean(abund_2),
wilcox_p_value = wilcox.test(abund_1, abund_2)$p.value)

}

combinations Which combinations of groups to use. Must be a list of vectors, each containing
the names of 2 groups to compare. By default, all pairwise combinations of
groups are compared.

other_cols If TRUE, preserve all columns not in cols in the output. If FALSE, dont keep
other columns. If a column names or indexes are supplied, only preserve those
columns.

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_obs_props, calc_prop_samples, calc_taxon_abund, counts_to_presence,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for plotting
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Convert counts to proportions
x$data$otu_table <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id)

Get per-taxon counts
x$data$tax_table <- calc_taxon_abund(x, data = "otu_table", cols = hmp_samples$sample_id)

Calculate difference between groups
x$data$diff_table <- compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site)

Plot results (might take a few minutes)
heat_tree_matrix(x,

data = "diff_table",

complement 19

node_size = n_obs,
node_label = taxon_names,
node_color = log2_median_ratio,
node_color_range = diverging_palette(),
node_color_trans = "linear",
node_color_interval = c(-3, 3),
edge_color_interval = c(-3, 3),
node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Log2 ratio median proportions")

How to get results for only some pairs of groups
compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site,
combinations = list(c('Nose', 'Saliva'),

c('Skin', 'Throat')))

End(Not run)

complement Find complement of sequences

Description

Find the complement of one or more sequences stored as a character vector. This is a wrapper for
comp for character vectors instead of lists of character vectors with one value per letter. IUPAC
ambiguity code are handled and the upper/lower case is preserved.

Usage

complement(seqs)

Arguments

seqs A character vector with one element per sequence.

See Also

Other sequence transformations: rev_comp, reverse

Examples

complement(c("aagtgGGTGaa", "AAGTGGT"))

20 counts_to_presence

counts_to_presence Apply a function to groups of columns

Description

For a given table in a taxmap object, apply a function to rows in groups of columns. The result of
the function is used to create new columns. This is equivalent to splitting columns of a table by a
factor and using apply on each group.

Usage

counts_to_presence(obj, data, threshold = 0, groups = NULL,
cols = NULL, other_cols = FALSE, out_names = NULL,
dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

threshold The value a number must be greater than to count as present. By, default, any-
thing above 0 is considered present.

groups Group multiple columns per treatment/group. This should be a vector of group
IDs (e.g. character, integer) the same length as cols that defines which samples
go in which group. When used, there will be one column in the output for each
unique value in groups.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

diverging_palette 21

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups,
rarefy_obs, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Convert count to presence/absence
counts_to_presence(x, "tax_data")

Check if there are any reads in each group of samples
counts_to_presence(x, "tax_data", groups = hmp_samples$body_site)

End(Not run)

diverging_palette The default diverging color palette

Description

Returns the default color palette for diverging data

Usage

diverging_palette()

Value

character of hex color codes

Examples

diverging_palette()

22 filter_ambiguous_taxa

filter_ambiguous_taxa
Filter ambiguous taxon names

Description

Filter out taxa with ambiguous names, such as "unknown" or "uncultured". NOTE: some parameters
of this function are passed to filter_taxa with the "invert" option set to TRUE. Works the same
way as filter_taxa for the most part.

Usage

filter_ambiguous_taxa(obj, unknown = TRUE, uncultured = TRUE,
name_regex = ".", ignore_case = TRUE, subtaxa = FALSE,
drop_obs = TRUE, reassign_obs = TRUE, reassign_taxa = TRUE)

Arguments

obj A taxmap object

unknown If TRUE, Remove taxa with names the suggest they are placeholders for un-
known taxa (e.g. "unknown ...").

uncultured If TRUE, Remove taxa with names the suggest they are assigned to uncultured
organisms (e.g. "uncultured ...").

name_regex The regex code to match a valid character in a taxon name. For example, "[a-z]"
would mean taxon names can only be lower case letters.

ignore_case If TRUE, dont consider the case of the text when determining a match.

subtaxa (logical or numeric of length 1) If TRUE, include subtaxa of taxa passing
the filter. Positive numbers indicate the number of ranks below the target taxa to
return. 0 is equivalent to FALSE. Negative numbers are equivalent to TRUE.

drop_obs (logical) This option only applies to taxmap() objects. If FALSE, include
observations (i.e. user-defined data in obj$data) even if the taxon they are as-
signed to is filtered out. Observations assigned to removed taxa will be assigned
to NA. This option can be either simply TRUE/FALSE, meaning that all data sets
will be treated the same, or a logical vector can be supplied with names corre-
sponding one or more data sets in obj$data. For example, c(abundance
= FALSE,stats = TRUE) would include observations whose taxon was fil-
tered out in obj$data$abundance, but not in obj$data$stats. See
the reassign_obs option below for further complications.

reassign_obs (logical of length 1) This option only applies to taxmap() objects. If
TRUE, observations (i.e. user-defined data in obj$data) assigned to removed
taxa will be reassigned to the closest supertaxon that passed the filter. If there are
no supertaxa of such an observation that passed the filter, they will be filtered out
if drop_obs is TRUE. This option can be either simply TRUE/FALSE, mean-
ing that all data sets will be treated the same, or a logical vector can be supplied

heat_tree 23

with names corresponding one or more data sets in obj$data. For exam-
ple, c(abundance = TRUE,stats = FALSE) would reassign observations
in obj$data$abundance, but not in obj$data$stats.

reassign_taxa
(logical of length 1) If TRUE, subtaxa of removed taxa will be reassigned to
the closest supertaxon that passed the filter. This is useful for removing inter-
mediate levels of a taxonomy.

Details

If you encounter a taxon name that represents an ambiguous taxon that is not filtered out by this
function, let us know and we will add it.

Value

A taxmap object

Examples

obj <- parse_tax_data(c("Plantae;Solanaceae;Solanum;lycopersicum",
"Plantae;Solanaceae;Solanum;tuberosum",
"Plantae;Solanaceae;Solanum;unknown",
"Plantae;Solanaceae;Solanum;uncultured",
"Plantae;UNIDENTIFIED"))

filter_ambiguous_taxa(obj)

heat_tree Plot a taxonomic tree

Description

Plots the distribution of values associated with a taxonomic classification/heirarchy. Taxonomic
classifications can have multiple roots, resulting in multiple trees on the same plot. A tree consists
of elements, element properties, conditions, and mapping properties which are represented as pa-
rameters in the heat_tree object. The elements (e.g. nodes, edges, lables, and individual trees) are
the infrastructure of the heat tree. The element properties (e.g. size and color) are characteristics
that are manipulated by various data conditions and mapping properties. The element properties can
be explicitly defined or automatically generated. The conditions are data (e.g. taxon statistics, such
as abundance) represented in the taxmap/metacoder object. The mapping properties are parameters
(e.g. transformations, range, interval, and layout) used to change the elements/element properties
and how they are used to represent (or not represent) the various conditions.

24 heat_tree

Usage

heat_tree(...)

S3 method for class 'Taxmap'
heat_tree(.input, ...)

Default S3 method:
heat_tree(taxon_id, supertaxon_id, node_label = NA,

edge_label = NA, tree_label = NA, node_size = 1,
edge_size = node_size, node_label_size = node_size,
edge_label_size = edge_size, tree_label_size = as.numeric(NA),
node_color = "#999999", edge_color = node_color, tree_color = NA,
node_label_color = "#000000", edge_label_color = "#000000",
tree_label_color = "#000000", node_size_trans = "area",
edge_size_trans = node_size_trans,
node_label_size_trans = node_size_trans,
edge_label_size_trans = edge_size_trans,
tree_label_size_trans = "area", node_color_trans = "area",
edge_color_trans = node_color_trans, tree_color_trans = "area",
node_label_color_trans = "area", edge_label_color_trans = "area",
tree_label_color_trans = "area", node_size_range = c(NA, NA),
edge_size_range = c(NA, NA), node_label_size_range = c(NA, NA),
edge_label_size_range = c(NA, NA), tree_label_size_range = c(NA, NA),
node_color_range = quantative_palette(),
edge_color_range = node_color_range,
tree_color_range = quantative_palette(),
node_label_color_range = quantative_palette(),
edge_label_color_range = quantative_palette(),
tree_label_color_range = quantative_palette(),
node_size_interval = range(node_size, na.rm = TRUE, finite = TRUE),
node_color_interval = NULL, edge_size_interval = range(edge_size,
na.rm = TRUE, finite = TRUE), edge_color_interval = NULL,
node_label_max = 500, edge_label_max = 500, tree_label_max = 500,
overlap_avoidance = 1, margin_size = c(0, 0, 0, 0),
layout = "reingold-tilford", initial_layout = "fruchterman-reingold",
make_node_legend = TRUE, make_edge_legend = TRUE, title = NULL,
title_size = 0.08, node_color_axis_label = NULL,
node_size_axis_label = NULL, edge_color_axis_label = NULL,
edge_size_axis_label = NULL, background_color = "#FFFFFF00",
output_file = NULL, aspect_ratio = 1, repel_labels = TRUE,
repel_force = 1, repel_iter = 1000, verbose = FALSE, ...)

Arguments

... (other named arguments) Passed to the igraph layout function used.

.input An object of type taxmap

taxon_id The unique ids of taxa.

heat_tree 25

supertaxon_id
The unique id of supertaxon taxon_id is a part of.

node_label See details on labels. Default: no labels.

edge_label See details on labels. Default: no labels.

tree_label See details on labels. The label to display above each graph. The value of the
root of each graph will be used. Default: None.

node_size See details on size. Default: constant size.

edge_size See details on size. Default: relative to node size.
node_label_size

See details on size. Default: relative to vertex size.
edge_label_size

See details on size. Default: relative to edge size.
tree_label_size

See details on size. Default: relative to graph size.

node_color See details on colors. Default: grey.

edge_color See details on colors. Default: same as node color.

tree_color See details on colors. The value of the root of each graph will be used. Over-
writes the node and edge color if specified. Default: Not used.

node_label_color
See details on colors. Default: black.

edge_label_color
See details on colors. Default: black.

tree_label_color
See details on colors. Default: black.

node_size_trans
See details on transformations. Default: "area".

edge_size_trans
See details on transformations. Default: same as node_size_trans.

node_label_size_trans
See details on transformations. Default: same as node_size_trans.

edge_label_size_trans
See details on transformations. Default: same as edge_size_trans.

tree_label_size_trans
See details on transformations. Default: "area".

node_color_trans
See details on transformations. Default: "area".

edge_color_trans
See details on transformations. Default: same as node color transformation.

tree_color_trans
See details on transformations. Default: "area".

node_label_color_trans
See details on transformations. Default: "area".

edge_label_color_trans
See details on transformations. Default: "area".

26 heat_tree

tree_label_color_trans
See details on transformations. Default: "area".

node_size_range
See details on ranges. Default: Optimize to balance overlaps and range size.

edge_size_range
See details on ranges. Default: relative to node size range.

node_label_size_range
See details on ranges. Default: relative to node size.

edge_label_size_range
See details on ranges. Default: relative to edge size.

tree_label_size_range
See details on ranges. Default: relative to tree size.

node_color_range
See details on ranges. Default: Color-blind friendly palette.

edge_color_range
See details on ranges. Default: same as node color.

tree_color_range
See details on ranges. Default: Color-blind friendly palette.

node_label_color_range
See details on ranges. Default: Color-blind friendly palette.

edge_label_color_range
See details on ranges. Default: Color-blind friendly palette.

tree_label_color_range
See details on ranges. Default: Color-blind friendly palette.

node_size_interval
See details on intervals. Default: The range of values in node_size.

node_color_interval
See details on intervals. Default: The range of values in node_color.

edge_size_interval
See details on intervals. Default: The range of values in edge_size.

edge_color_interval
See details on intervals. Default: The range of values in edge_color.

node_label_max
The maximum number of node labels. Default: 20.

edge_label_max
The maximum number of edge labels. Default: 20.

tree_label_max
The maximum number of tree labels. Default: 20.

overlap_avoidance
(numeric) The relative importance of avoiding overlaps vs maximizing size
range. Higher numbers will cause node size optimization to avoid overlaps
more. Default: 1.

margin_size (numeric of length 2) The horizontal and vertical margins. c(left, right, bot-
tom, top). Default: 0,0,0,0.

layout The layout algorithm used to position nodes. See details on layouts. Default:
"reingold-tilford".

heat_tree 27

initial_layout
he layout algorithm used to set the initial position of nodes, passed as input to
the layout algorithm. See details on layouts. Default: Not used.

make_node_legend
if TRUE, make legend for node size/color mappings.

make_edge_legend
if TRUE, make legend for edge size/color mappings.

title Name to print above the graph.
title_size The size of the title relative to the rest of the graph.
node_color_axis_label

The label on the scale axis corresponding to node_color. Default: The ex-
pression given to node_color.

node_size_axis_label
The label on the scale axis corresponding to node_size. Default: The expres-
sion given to node_size.

edge_color_axis_label
The label on the scale axis corresponding to edge_color. Default: The ex-
pression given to edge_color.

edge_size_axis_label
The label on the scale axis corresponding to edge_size. Default: The expres-
sion given to edge_size.

background_color
The background color of the plot. Default: Transparent

output_file The path to one or more files to save the plot in using ggsave. The type of the
file will be determined by the extension given. Default: Do not save plot.

aspect_ratio The aspect_ratio of the plot.
repel_labels If TRUE (Default), use the ggrepel package to spread out labels.
repel_force The force of which overlapping labels will be repelled from eachother.
repel_iter The number of iterations used when repelling labels
verbose If TRUE print progress reports as the function runs.

labels

The labels of nodes, edges, and trees can be added. Node labels are centered over their node. Edge
labels are displayed over edges, in the same orientation. Tree labels are displayed over their tree.

Accepts a vector, the same length taxon_id or a factor of its length.

sizes

The size of nodes, edges, labels, and trees can be mapped to various conditions. This is useful
for displaying statistics for taxa, such as abundance. Only the relative size of the condition is
used, not the values themselves. The <element>_size_trans (transformation) parameter can be used
to make the size mapping non-linear. The <element>_size_range parameter can be used to pro-
portionately change the size of an element based on the condition mapped to that element. The
<element>_size_interval parameter can be used to change the limit at which a condition will be
graphically represented as the same size as the minimum/maximum <element>_size_range.

Accepts a numeric vector, the same length taxon_id or a factor of its length.

28 heat_tree

colors

The colors of nodes, edges, labels, and trees can be mapped to various conditions. This is useful
for visually highlighting/clustering groups of taxa. Only the relative size of the condition is used,
not the values themselves. The <element>_color_trans (transformation) parameter can be used to
make the color mapping non-linear. The <element>_color_range parameter can be used to pro-
portionately change the color of an element based on the condition mapped to that element. The
<element>_color_interval parameter can be used to change the limit at which a condition will be
graphically represented as the same color as the minimum/maximum <element>_color_range.

Accepts a vector, the same length taxon_id or a factor of its length. If a numeric vector is given,
it is mapped to a color scale. Hex values or color names can be used (e.g. #000000 or "black").

Mapping Properties

transformations

Before any conditions specified are mapped to an element property (color/size), they can be trans-
formed to make the mapping non-linear. Any of the transformations listed below can be used by
specifying their name. A customized function can also be supplied to do the transformation.

"linear" Proportional to radius/diameter of node

"area" circular area; better perceptual accuracy than "linear"

"log10" Log base 10 of radius

"log2" Log base 2 of radius

"ln" Log base e of radius

"log10 area" Log base 10 of circular area

"log2 area" Log base 2 of circular area

"ln area" Log base e of circular area

ranges

The displayed range of colors and sizes can be explicitly defined or automatically generated. When
explicitly used, the size range will proportionately increase/decrease the size of a particular element.
Size ranges are specified by supplying a numeric vector with two values: the minimum and
maximum. The units used should be between 0 and 1, representing the proportion of a dimension
of the graph. Since the dimensions of the graph are determined by layout, and not always square,
the value that 1 corresponds to is the square root of the graph area (i.e. the side of a square with
the same area as the plotted space). Color ranges can be any number of color values as either HEX
codes (e.g. #000000) or color names (e.g. "black").

layout

Layouts determine the position of node elements on the graph. They are implemented using the
igraph package. Any additional arguments passed to heat_tree are passed to the igraph
function used. The following character values are understood:

"automatic" Use nicely. Let igraph choose the layout.

"reingold-tilford" Use as_tree. A circular tree-like layout.

heat_tree 29

"davidson-harel" Use with_dh. A type of simulated annealing.

"gem" Use with_gem. A force-directed layout.

"graphopt" Use with_graphopt. A force-directed layout.

"mds" Use with_mds. Multidimensional scaling.

"fruchterman-reingold" Use with_fr. A force-directed layout.

"kamada-kawai" Use with_kk. A layout based on a physical model of springs.

"large-graph" Use with_lgl. Meant for larger graphs.

"drl" Use with_drl. A force-directed layout.

intervals

This is the minimum and maximum of values displayed on the legend scales. Intervals are specified
by supplying a numeric vector with two values: the minimum and maximum. When explicitly
used, the <element>_<property>_interval will redefine the way the actual conditional values are
being represented by setting a limit for the <element>_<property>. Any condition below the min-
imum <element>_<property>_interval will be graphically represented the same as a condition AT
the minimum value in the full range of conditional values. Any value above the maximum <ele-
ment>_<property>_interval will be graphically represented the same as a value AT the maximum
value in the full range of conditional values. By default, the minimum and maximum equals the <el-
ement>_<property>_range used to infer the value of the <element>_<property>. Setting a custom
interval is useful for making <element>_<properties> in multiple graphs correspond to the same
conditions, or setting logical boundaries (such as c(0,1) for proportions. Note that this is differ-
ent from the <element>_<property>_range mapping property, which determines the size/color of
graphed elements.

Acknowledgements

This package includes code from the R package ggrepel to handle label overlap avoidance with
permission from the author of ggrepel Kamil Slowikowski. We included the code instead of de-
pending on ggrepel because we are using internal functions to ggrepel that might change in the
future. We thank Kamil Slowikowski for letting us use his code and would like to acknowledge his
implementation of the label overlap avoidance used in metacoder.

Examples

Not run:
Parse dataset for plotting
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Default appearance:
No parmeters are needed, but the default tree is not too useful
heat_tree(x)

A good place to start:
There will always be "taxon_names" and "n_obs" variables, so this is a
good place to start. This will shown the number of OTUs in this case.

30 heat_tree

heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs)

Plotting read depth:
To plot read depth, you first need to add up the number of reads per taxon.
The function `calc_taxon_abund` is good for this.
x$data$taxon_counts <- calc_taxon_abund(x, data = "tax_data")
x$data$taxon_counts$total <- rowSums(x$data$taxon_counts[, -1]) # -1 = taxon_id column
heat_tree(x, node_label = taxon_names, node_size = total, node_color = total)

Plotting multiple variables:
You can plot up to 4 quantative variables use node/edge size/color, but it
is usually best to use 2 or 3. The plot below uses node size for number of
OTUs and color for number of reads and edge size for number of samples
x$data$n_samples <- calc_n_samples(x, data = "taxon_counts")
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = total,

edge_color = n_samples)

Different layouts:
You can use any layout implemented by igraph. You can also specify an
initial layout to seed the main layout with.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

layout = "davidson-harel")
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

layout = "davidson-harel", initial_layout = "reingold-tilford")

Axis labels:
You can add custom labeles to the legends
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = total,

edge_color = n_samples, node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Number of reads",
edge_color_axis_label = "Number of samples")

Overlap avoidance:
You can change how much node overlap avoidance is used.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

overlap_avoidance = .5)

Label overlap avoidance
You can modfiy how label scattering is handled using the `replel_force` and
`repel_iter` options. You can turn off label scattering using the `repel_labels` option.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

repel_force = 2, repel_iter = 20000)
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

repel_labels = FALSE)

Setting the size of graph elements:
You can force nodes, edges, and lables to be a specific size/color range instead
of letting the function optimize it. These options end in `_range`.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_range = c(0.01, .1))
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

edge_color_range = c("black", "#FFFFFF"))
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

heat_tree_matrix 31

node_label_size_range = c(0.02, 0.02))

Setting the transformation used:
You can change how raw statistics are converted to color/size using options
ending in _trans.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_trans = "log10 area")

Setting the interval displayed:
By default, the whole range of the statistic provided will be displayed.
You can set what range of values are displayed using options ending in `_interval`.
heat_tree(x, node_label = taxon_names, node_size = n_obs, node_color = n_obs,

node_size_interval = c(10, 100))

End(Not run)

heat_tree_matrix Plot a matrix of heat trees

Description

Plot a matrix of heat trees for showing pairwise comparisons. A larger, labelled tree serves as a
key for the matrix of smaller unlabelled trees. The data for this function is typically created with
compare_groups,

Usage

heat_tree_matrix(obj, data, label_small_trees = FALSE, key_size = 0.6,
seed = 1, output_file = NULL,
row_label_color = diverging_palette()[3],
col_label_color = diverging_palette()[1], row_label_size = 12,
col_label_size = 12, ..., dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data that is the output of compare_groups or
in the same format.

label_small_trees
If TRUE add labels to small trees as well as the key tree. Otherwise, only the
key tree will be labeled.

key_size The size of the key tree relative to the whole graph. For example, 0.5 means half
the width/height of the graph.

seed That random seed used to make the graphs.

output_file The path to one or more files to save the plot in using ggsave. The type of the
file will be determined by the extension given. Default: Do not save plot.

32 heat_tree_matrix

row_label_color
The color of the row labels on the right side of the matrix. Default: based on the
node_color_range.

col_label_color
The color of the columns labels along the top of the matrix. Default: based on
the node_color_range.

row_label_size
The size of the row labels on the right side of the matrix. Default: 12.

col_label_size
The size of the columns labels along the top of the matrix. Default: 12.

... Passed to heat_tree. Some options will be overwritten.

dataset DEPRECIATED. use "data" instead.

Examples

Not run:
Parse dataset for plotting
x <- parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Convert counts to proportions
x$data$otu_table <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id)

Get per-taxon counts
x$data$tax_table <- calc_taxon_abund(x, data = "otu_table", cols = hmp_samples$sample_id)

Calculate difference between treatments
x$data$diff_table <- compare_groups(x, data = "tax_table",

cols = hmp_samples$sample_id,
groups = hmp_samples$body_site)

Plot results (might take a few minutes)
heat_tree_matrix(x,

data = "diff_table",
node_size = n_obs,
node_label = taxon_names,
node_color = log2_median_ratio,
node_color_range = diverging_palette(),
node_color_trans = "linear",
node_color_interval = c(-3, 3),
edge_color_interval = c(-3, 3),
node_size_axis_label = "Number of OTUs",
node_color_axis_label = "Log2 ratio median proportions")

End(Not run)

hmp_otus 33

hmp_otus A HMP subset

Description

A subset of the Human Microbiome Project abundance matrix produced by QIIME. It contains OTU
ids, taxonomic lineages, and the read counts for 50 samples. See hmp_samples for the matching
dataset of sample information.

Format

A 1,000 x 52 tibble.

Details

The 50 samples were randomly selected such that there were 10 in each of 5 treatments: "Saliva",
"Throat", "Stool", "Right_Antecubital_fossa", "Anterior_nares". For each treatment, there were 5
samples from men and 5 from women.

Source

Subset from data available at https://www.hmpdacc.org/hmp/HMQCP/

See Also

Other hmp_data: hmp_samples

hmp_samples Sample information for HMP subset

Description

The sample information for a subset of the Human Microbiome Project data. It contains the sam-
ple ID, sex, and body site for each sample in the abundance matrix stored in hmp_otus. The
"sample_id" column corresponds to the column names of hmp_otus.

Format

A 50 x 3 tibble.

Details

The 50 samples were randomly selected such that there were 10 in each of 5 treatments: "Saliva",
"Throat", "Stool", "Right_Antecubital_fossa", "Anterior_nares". For each treatment, there were
5 samples from men and 5 from women. "Right_Antecubital_fossa" was renamed to "Skin" and
"Anterior_nares" to "Nose".

34 is_ambiguous

Source

Subset from data available at https://www.hmpdacc.org/hmp/HMQCP/

See Also

Other hmp_data: hmp_otus

is_ambiguous Find ambiguous taxon names

Description

Find taxa with ambiguous names, such as "unknown" or "uncultured".

Usage

is_ambiguous(taxon_names, unknown = TRUE, uncultured = TRUE,
name_regex = ".", ignore_case = TRUE)

Arguments

taxon_names A taxmap object

unknown If TRUE, Remove taxa with names the suggest they are placeholders for un-
known taxa (e.g. "unknown ...").

uncultured If TRUE, Remove taxa with names the suggest they are assigned to uncultured
organisms (e.g. "uncultured ...").

name_regex The regex code to match a valid character in a taxon name. For example, "[a-z]"
would mean taxon names can only be lower case letters.

ignore_case If TRUE, dont consider the case of the text when determining a match.

Details

If you encounter a taxon name that represents an ambiguous taxon that is not filtered out by this
function, let us know and we will add it.

Value

TRUE/FALSE vector corresponding to taxon_names

Examples

is_ambiguous(c("unknown", "uncultured", "homo sapiens", "kfdsjfdljsdf"))

layout_functions 35

layout_functions Layout functions

Description

Functions used to determine graph layout. Calling the function with no parameters returns avail-
able function names. Calling the function with only the name of a function returns that function.
Supplying a name and a graph object to run the layout function on the graph.

Usage

layout_functions(name = NULL, graph = NULL, intitial_coords = NULL,
effort = 1, ...)

Arguments

name (character of length 1 OR NULL) name of algorithm. Leave NULL to see
all options.

graph (igraph) The graph to generate the layout for.

intitial_coords
(matrix) Initial node layout to base new layout off of.

effort (numeric of length 1) The amount of effort to put into layouts. Typically
determines the the number of iterations.

... (other arguments) Passed to igraph layout function used.

Value

The name available functions, a layout functions, or a two-column matrix depending on how argu-
ments are provided.

Examples

List available function names:
layout_functions()

Execute layout function on graph:
layout_functions("davidson-harel", igraph::make_ring(5))

36 make_dada2_tax_table

make_dada2_asv_table
Make a imitation of the dada2 ASV abundance matrix

Description

Attempts to save the abundance matrix stored as a table in a taxmap object in the dada2 ASV
abundance matrix format. If the taxmap object was created using parse_dada2, then it should
be able to replicate the format exactly with the default settings.

Usage

make_dada2_asv_table(obj, asv_table = "asv_table", asv_id = "asv_id")

Arguments

obj A taxmap object

asv_table The name of the abundance matrix in the taxmap object to use.

asv_id The name of the column in asv_table with unique ASV ids or sequences.

Value

A numeric matrix with rows as samples and columns as ASVs

See Also

Other writers: make_dada2_tax_table, write_greengenes, write_mothur_taxonomy,
write_rdp, write_silva_fasta, write_unite_general

make_dada2_tax_table
Make a imitation of the dada2 taxonomy matrix

Description

Attempts to save the taxonomy information assocaited with an abundance matrix in a taxmap object
in the dada2 taxonomy matrix format. If the taxmap object was created using parse_dada2, then
it should be able to replicate the format exactly with the default settings.

Usage

make_dada2_tax_table(obj, asv_table = "asv_table", asv_id = "asv_id")

metacoder 37

Arguments

obj A taxmap object

asv_table The name of the abundance matrix in the taxmap object to use.

asv_id The name of the column in asv_table with unique ASV ids or sequences.

Value

A character matrix with rows as ASVs and columns as taxonomic ranks.

See Also

Other writers: make_dada2_asv_table, write_greengenes, write_mothur_taxonomy,
write_rdp, write_silva_fasta, write_unite_general

metacoder Metacoder

Description

A package for planning and analysis of amplicon metagenomics research projects.

Details

The goal of the metacoder package is to provide a set of tools for:

• Standardized parsing of taxonomic information from diverse resources.

• Visualization of statistics distributed over taxonomic classifications.

• Evaluating potential metabarcoding primers for taxonomic specificity.

• Providing flexible functions for analyzing taxonomic and abundance data.

To accomplish these goals, metacoder leverages resources from other R packages, interfaces
with external programs, and provides novel functions where needed to allow for entire analyses
within R.

Documentation

The full documentation can be found online at http://grunwaldlab.github.io/metacoder_
documentation.

There is also a short vignette included for offline use that can be accessed by the following code:

browseVignettes(package = "metacoder")

Plotting:

• heat_tree

• heat_tree_matrix

38 metacoder

In silico PCR:

• primersearch

Analysis:

• calc_taxon_abund

• calc_obs_props

• rarefy_obs

• compare_groups

• zero_low_counts

• calc_n_samples

• filter_ambiguous_taxa

Parsers:

• parse_greengenes

• parse_mothur_tax_summary

• parse_mothur_taxonomy

• parse_newick

• parse_phyloseq

• parse_phylo

• parse_qiime_biom

• parse_rdp

• parse_silva_fasta

• parse_unite_general

Writers:

• write_greengenes

• write_mothur_taxonomy

• write_rdp

• write_silva_fasta

• write_unite_general

Database querying:

• ncbi_taxon_sample

Author(s)

Zachary Foster and Niklaus Grunwald

ncbi_taxon_sample 39

ncbi_taxon_sample Download representative sequences for a taxon

Description

Downloads a sample of sequences meant to evenly capture the diversity of a given taxon. Can be
used to get a shallow sampling of vast groups. CAUTION: This function can make MANY queries
to Genbank depending on arguments given and can take a very long time. Choose your arguments
carefully to avoid long waits and needlessly stressing NCBI’s servers. Use a downloaded database
and a parser from the taxa package when possible.

Usage

ncbi_taxon_sample(name = NULL, id = NULL, target_rank,
min_counts = NULL, max_counts = NULL, interpolate_min = TRUE,
interpolate_max = TRUE, min_children = NULL, max_children = NULL,
seqrange = "1:3000", getrelated = FALSE, fuzzy = TRUE,
limit = 10, entrez_query = NULL, hypothetical = FALSE,
verbose = TRUE)

Arguments

name (character of length 1) The taxon to download a sample of sequences for.

id (character of length 1) The taxon id to download a sample of sequences for.

target_rank (character of length 1) The finest taxonomic rank at which to sample. The
finest rank at which replication occurs. Must be a finer rank than taxon.

min_counts (named numeric) The minimum number of sequences to download for each
taxonomic rank. The names correspond to taxonomic ranks.

max_counts (named numeric) The maximum number of sequences to download for each
taxonomic rank. The names correspond to taxonomic ranks.

interpolate_min
(logical) If TRUE, values supplied to min_counts and min_children
will be used to infer the values of intermediate ranks not specified. Linear inter-
polation between values of specified ranks will be used to determine values of
unspecified ranks.

interpolate_max
(logical) If TRUE, values supplied to max_counts and max_children
will be used to infer the values of intermediate ranks not specified. Linear inter-
polation between values of specified ranks will be used to determine values of
unspecified ranks.

min_children (named numeric) The minimum number sub-taxa of taxa for a given rank
must have for its sequences to be searched. The names correspond to taxonomic
ranks.

40 parse_dada2

max_children (named numeric) The maximum number sub-taxa of taxa for a given rank
must have for its sequences to be searched. The names correspond to taxonomic
ranks.

seqrange (character) Sequence range, as e.g., "1:1000". This is the range of sequence
lengths to search for. So "1:1000"means search for sequences from 1 to 1000
characters in length.

getrelated (logical) If TRUE, gets the longest sequences of a species in the same genus as
the one searched for. If FALSE, returns nothing if no match found.

fuzzy (logical) Whether to do fuzzy taxonomic ID search or exact search. If TRUE,
we use xXarbitraryXx[porgn:__txid<ID>], but if FALSE, we use
txid<ID>. Default: FALSE

limit (numeric) Number of sequences to search for and return. Max of 10,000. If
you search for 6000 records, and only 5000 are found, you will of course only
get 5000 back.

entrez_query (character; length 1) An Entrez-format query to filter results with. This is
useful to search for sequences with specific characteristics. The format is the
same as the one used to seach genbank. (https://www.ncbi.nlm.nih.
gov/books/NBK3837/#EntrezHelp.Entrez_Searching_Options)

hypothetical (logical; length 1) If FALSE, an attempt will be made to not return hypo-
thetical or predicted sequences judging from accession number prefixs (XM and
XR). This can result in less than the limit being returned even if there are
more sequences available, since this filtering is done after searching NCBI.

verbose (logical) If TRUE, progress messages will be printed.

Examples

Not run:

Look up 5 ITS sequences from each fungal class
data <- ncbi_taxon_sample(name = "Fungi", target_rank = "class", limit = 5,

entrez_query = '"internal transcribed spacer"[All Fields]')

Look up taxonomic information for sequences
obj <- lookup_tax_data(data, type = "seq_id", column = "gi_no")

Plot information
filter_taxa(obj, taxon_names == "Fungi", subtaxa = TRUE) %>%
heat_tree(node_label = taxon_names, node_color = n_obs, node_size = n_obs)

End(Not run)

parse_dada2 Convert the output of dada2 to a taxmap object

parse_dada2 41

Description

Convert the ASV table and taxonomy table returned by dada2 into a taxmap object. An example of
the input format can be found by following the dada2 tutorial here: shttps://benjjneb.github.io/dada2/tutorial.html

Usage

parse_dada2(seq_table, tax_table, class_key = "taxon_name",
class_regex = "(.*)", include_match = TRUE)

Arguments

seq_table The ASV abundance matrix, with rows as samples and columns as ASV ids or
sequences

tax_table The table with taxonomic classifications for ASVs, with ASVs in rows and tax-
onomic ranks as columns.

class_key (character of length 1) The identity of the capturing groups defined using
class_regex. The length of class_key must be equal to the number of
capturing groups specified in class_regex. Any names added to the terms
will be used as column names in the output. At least one "taxon_name"
must be specified. Only "info" can be used multiple times. Each term must
be one of those described below: * taxon_name: The name of a taxon.
Not necessarily unique, but are interpretable by a particular database. Re-
quires an internet connection. * taxon_rank: The rank of the taxon. This
will be used to add rank info into the output object that can be accessed by
out$taxon_ranks(). * info: Arbitrary taxon info you want included in
the output. Can be used more than once.

class_regex (character of length 1) A regular expression with capturing groups indicat-
ing the locations of data for each taxon in the class term in the key argument.
The identity of the information must be specified using the class_key ar-
gument. The class_sep option can be used to split the classification into
data for each taxon before matching. If class_sep is NULL, each match of
class_regex defines a taxon in the classification.

include_match
(logical of length 1) If TRUE, include the part of the input matched by
class_regex in the output object.

Value

taxmap

See Also

Other parsers: parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_rdp, parse_silva_fasta, parse_ubiome, parse_unite_general

42 parse_greengenes

parse_greengenes Parse Greengenes release

Description

Parses the greengenes database.

Usage

parse_greengenes(tax_file, seq_file = NULL)

Arguments

tax_file (character of length 1) The file path to the greengenes taxonomy file.

seq_file (character of length 1) The file path to the greengenes sequence fasta file.
This is optional.

Details

The taxonomy input file has a format like:

228054 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
844608 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
...

The optional sequence file has a format like:

>1111886
AACGAACGCTGGCGGCATGCCTAACACATGCAAGTCGAACGAGACCTTCGGGTCTAGTGGCGCACGGGTGCGTA...
>1111885
AGAGTTTGATCCTGGCTCAGAATGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGTACGAGAAATCCCGAGC...
...

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_mothur_tax_summary, parse_mothur_taxonomy,
parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom, parse_rdp,
parse_silva_fasta, parse_ubiome, parse_unite_general

parse_mothur_taxonomy 43

parse_mothur_taxonomy
Parse mothur Classify.seqs *.taxonomy output

Description

Parse the ‘*.taxonomy‘ file that is returned by the ‘Classify.seqs‘ command in mothur. If confidence
scores are present, they are included in the output.

Usage

parse_mothur_taxonomy(file = NULL, text = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file" or "text"
must be used, but not both.

text (character) An alternate input to "file". The contents of the file as a charac-
ter. Either "file" or "text" must be used, but not both.

Details

The input file has a format like:

AY457915 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457914 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457913 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457912 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457911 Bacteria(100);Firmicutes(99);Clostridiales(98);Ruminoco...

or...

AY457915 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457914 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457913 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457912 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457911 Bacteria;Firmicutes;Clostridiales;Ruminococcus_et_rel.;...

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom, parse_rdp,
parse_silva_fasta, parse_ubiome, parse_unite_general

44 parse_mothur_tax_summary

parse_mothur_tax_summary
Parse mothur *.tax.summary Classify.seqs output

Description

Parse the ‘*.tax.summary‘ file that is returned by the ‘Classify.seqs‘ command in mothur.

Usage

parse_mothur_tax_summary(file = NULL, text = NULL, table = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file", "text", or
"table" must be used, but only one.

text (character) An alternate input to "file". The contents of the file as a charac-
ter. Either "file", "text", or "table" must be used, but only one.

table (character of length 1) An already parsed data.frame or tibble. Either "file",
"text", or "table" must be used, but only one.

Details

The input file has a format like:

taxlevel rankID taxon daughterlevels total A B C
0 0 Root 2 242 84 84 74
1 0.1 Bacteria 50 242 84 84 74
2 0.1.2 Actinobacteria 38 13 0 13 0
3 0.1.2.3 Actinomycetaceae-Bifidobacteriaceae 10 13 0 13 0
4 0.1.2.3.7 Bifidobacteriaceae 6 13 0 13 0
5 0.1.2.3.7.2 Bifidobacterium_choerinum_et_rel. 8 13 0 13 0
6 0.1.2.3.7.2.1 Bifidobacterium_angulatum_et_rel. 1 11 0 11 0
7 0.1.2.3.7.2.1.1 unclassified 1 11 0 11 0
8 0.1.2.3.7.2.1.1.1 unclassified 1 11 0 11 0
9 0.1.2.3.7.2.1.1.1.1 unclassified 1 11 0 11 0
10 0.1.2.3.7.2.1.1.1.1.1 unclassified 1 11 0 11 0
11 0.1.2.3.7.2.1.1.1.1.1.1 unclassified 1 11 0 11 0
12 0.1.2.3.7.2.1.1.1.1.1.1.1 unclassified 1 11 0 11 0
6 0.1.2.3.7.2.5 Bifidobacterium_longum_et_rel. 1 2 0 2 0
7 0.1.2.3.7.2.5.1 unclassified 1 2 0 2 0
8 0.1.2.3.7.2.5.1.1 unclassified 1 2 0 2 0
9 0.1.2.3.7.2.5.1.1.1 unclassified 1 2 0 2 0

or

parse_newick 45

taxon total A B C
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0
"k__Bacteria";"p__Actinobacteria";"c__Actinobacteria";... 1 0 1 0

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_taxonomy,
parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom, parse_rdp,
parse_silva_fasta, parse_ubiome, parse_unite_general

parse_newick Parse a Newick file

Description

Parse a Newick file into a taxmap object.

Usage

parse_newick(file = NULL, text = NULL)

Arguments

file (character of length 1) The file path to the input file. Either file or text
must be supplied but not both.

text (character of length 1) The raw text to parse. Either file or text must be
supplied but not both.

Details

The input file has a format like:

(ant:17, (bat:31, cow:22):7, dog:22, (elk:33, fox:12):40);
(dog:20, (elephant:30, horse:60):20):50;

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_rdp, parse_silva_fasta, parse_ubiome, parse_unite_general

46 parse_phyloseq

parse_phylo Parse a phylo object

Description

Parses a phylo object from the ape package.

Usage

parse_phylo(obj)

Arguments

obj A phylo object from the ape package.

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_qiime_biom,
parse_rdp, parse_silva_fasta, parse_ubiome, parse_unite_general

parse_phyloseq Convert a phyloseq to taxmap

Description

Converts a phyloseq object to a taxmap object.

Usage

parse_phyloseq(obj, class_regex = "(.*)", class_key = "taxon_name")

Arguments

obj A phyloseq object

class_regex A regular expression used to parse data in the taxon names. There must be
a capture group (a pair of parentheses) for each item in class_key. See
parse_tax_data for examples of how this works.

parse_phyloseq 47

class_key (character of length 1) The identity of the capturing groups defined using
class_regex. The length of class_key must be equal to the number of
capturing groups specified in class_regex. Any names added to the terms
will be used as column names in the output. At least one "taxon_name"
must be specified. Only "info" can be used multiple times. Each term must
be one of those described below: * taxon_name: The name of a taxon.
Not necessarily unique, but are interpretable by a particular database. Re-
quires an internet connection. * taxon_rank: The rank of the taxon. This
will be used to add rank info into the output object that can be accessed by
out$taxon_ranks(). * info: Arbitrary taxon info you want included in
the output. Can be used more than once.

Value

A taxmap object

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phylo, parse_qiime_biom, parse_rdp,
parse_silva_fasta, parse_ubiome, parse_unite_general

Examples

Not run:

Install phyloseq to get example data
source('http://bioconductor.org/biocLite.R')
biocLite('phyloseq')

Parse example dataset
library(phyloseq)
data(GlobalPatterns)
x <- parse_phyloseq(GlobalPatterns)

Plot data
heat_tree(x,

node_size = n_obs,
node_color = n_obs,
node_label = taxon_names,
tree_label = taxon_names)

End(Not run)

48 parse_qiime_biom

parse_qiime_biom Parse a BIOM output from QIIME

Description

Parses a file in BIOM format from QIIME into a taxmap object. This also seems to work with files
from MEGAN. I have not tested if it works with other BIOM files.

Usage

parse_qiime_biom(file, class_regex = "(.*)", class_key = "taxon_name")

Arguments

file (character of length 1) The file path to the input file.

class_regex A regular expression used to parse data in the taxon names. There must be
a capture group (a pair of parentheses) for each item in class_key. See
parse_tax_data for examples of how this works.

class_key (character of length 1) The identity of the capturing groups defined using
class_regex. The length of class_key must be equal to the number of
capturing groups specified in class_regex. Any names added to the terms
will be used as column names in the output. At least one "taxon_name"
must be specified. Only "info" can be used multiple times. Each term must
be one of those described below: * taxon_name: The name of a taxon.
Not necessarily unique, but are interpretable by a particular database. Re-
quires an internet connection. * taxon_rank: The rank of the taxon. This
will be used to add rank info into the output object that can be accessed by
out$taxon_ranks(). * info: Arbitrary taxon info you want included in
the output. Can be used more than once.

Details

This function was inspired by the tutorial created by Geoffrey Zahn at http://geoffreyzahn.com/getting-
your-otu-table-into-r/.

Value

A taxmap object

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_rdp,
parse_silva_fasta, parse_ubiome, parse_unite_general

parse_rdp 49

parse_rdp Parse RDP FASTA release

Description

Parses an RDP reference FASTA file.

Usage

parse_rdp(input = NULL, file = NULL, include_seqs = TRUE,
add_species = FALSE)

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

add_species (logical of length 1) If TRUE, add the species information to the taxonomy.
In this database, the species name often contains other information as well.

Details

The input file has a format like:

>S000448483 Sparassis crispa; MBUH-PIRJO&ILKKA94-1587/ss5 Lineage=Root;rootrank;Fun...
ggattcccctagtaactgcgagtgaagcgggaagagctcaaatttaaaatctggcggcgtcctcgtcgtccgagttgtaa
tctggagaagcgacatccgcgctggaccgtgtacaagtctcttggaaaagagcgtcgtagagggtgacaatcccgtcttt
...

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_silva_fasta, parse_ubiome, parse_unite_general

50 parse_silva_fasta

parse_silva_fasta Parse SILVA FASTA release

Description

Parses an SILVA FASTA file that can be found at https://www.arb-silva.de/no_cache/
download/archive/release_128/Exports/.

Usage

parse_silva_fasta(file = NULL, input = NULL, include_seqs = TRUE)

Arguments

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

Details

The input file has a format like:

>GCVF01000431.1.2369
Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospiril...
CGUGCACGGUGGAUGCCUUGGCAGCCAGAGGCGAUGAAGGACGUUGUAGCCUGCGAUAAGCUCCGGUUAGGUGGCAAACA
ACCGUUUGACCCGGAGAUCUCCGAAUGGGGCAACCCACCCGUUGUAAGGCGGGUAUCACCGACUGAAUCCAUAGGUCGGU
...

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_rdp, parse_ubiome, parse_unite_general

parse_ubiome 51

parse_ubiome Converts the uBiome file format to taxmap

Description

Converts the uBiome file format to taxmap. NOTE: This is experimental and might not work if
uBiome changes their format. Contact the maintainers if you encounter problems/

Usage

parse_ubiome(file = NULL, table = NULL)

Arguments

file (character of length 1) The file path to the input file. Either "file", or "table"
must be used, but only one.

table (character of length 1) An already parsed data.frame or tibble. Either "file",
or "table" must be used, but only one.

Details

The input file has a format like:

tax_name,tax_rank,count,count_norm,taxon,parent
root,root,29393,1011911,1,
Bacteria,superkingdom,29047,1000000,2,131567
Campylobacter,genus,23,791,194,72294
Flavobacterium,genus,264,9088,237,49546

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_rdp, parse_silva_fasta, parse_unite_general

52 parse_unite_general

parse_unite_general
Parse UNITE general release FASTA

Description

Parse the UNITE general release FASTA file

Usage

parse_unite_general(input = NULL, file = NULL, include_seqs = TRUE)

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

include_seqs (logical of length 1) If TRUE, include sequences in the output object.

Details

The input file has a format like:

>Glomeromycota_sp|KJ484724|SH523877.07FU|reps|k__Fungi;p__Glomeromycota;c__unid...
ATAATTTGCCGAACCTAGCGTTAGCGCGAGGTTCTGCGATCAACACTTATATTTAAAACCCAACTCTTAAATTTTGTAT...

Value

taxmap

See Also

Other parsers: parse_dada2, parse_edge_list, parse_greengenes, parse_mothur_tax_summary,
parse_mothur_taxonomy, parse_newick, parse_phyloseq, parse_phylo, parse_qiime_biom,
parse_rdp, parse_silva_fasta, parse_ubiome

primersearch 53

primersearch Use EMBOSS primersearch for in silico PCR

Description

A pair of primers are aligned against a set of sequences. A taxmap object with two tables is
returned: a table with information for each predicted amplicon, quality of match, and predicted
amplicons, and a table with per-taxon amplification statistics. Requires the EMBOSS tool kit
(http://emboss.sourceforge.net/) to be installed.

Usage

primersearch(obj, seqs, forward, reverse, mismatch = 5, clone = TRUE)

Arguments

obj A taxmap object.

seqs The sequences to do in silico PCR on. This can be any variable in obj$data
listed in all_names(obj) or an external variable. If an external variable (i.e.
not in obj$data), it must be named by taxon IDs or have the same length as
the number of taxa in obj. Currently, only character vectors are accepted.

forward (character of length 1) The forward primer sequence

reverse (character of length 1) The reverse primer sequence

mismatch An integer vector of length 1. The percentage of mismatches allowed.

clone If TRUE, make a copy of the input object and add on the results (like most
R functions). If FALSE, the input will be changed without saving the result,
which uses less RAM.

Details

It can be confusing how the primer sequence relates to the binding sites on a reference database
sequence. A simplified diagram can help. For example, if the top strand below (5’ -> 3’) is the
database sequence, the forward primer has the same sequence as the target region, since it will bind
to the other strand (3’ -> 5’) during PCR and extend on the 3’ end. However, the reverse primer
must bind to the database strand, so it will have to be the complement of the reference sequence. It
also has to be reversed to make it in the standard 5’ -> 3’ orientation. Therefore, the reverse primer
must be the reverse complement of its binding site on the reference sequence.

Primer 1: 5' AAGTACCTTAACGGAATTATAG 3'
Primer 2: 5' GCTCCACCTACGAAACGAAT 3'

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

3' ...TTCATGGAATTGCCTTAATATC......TAAGCAAAGCATCCACCTCG... 5'
5' AAGTACCTTAACGGAATTATAG ->

54 primersearch

However, a database might have either the top or the bottom strand as a reference sequence. Since
one implies the sequence of the other, either is valid, but this is another source of confusion. If we
take the diagram above and rotate it 180 degrees, it would mean the same thing, but which primer we
would want to call "forward" and which we would want to call "reverse" would change. Databases
of a single locus (e.g. Greengenes) will likely have a convention for which strand will be present,
so relative to this convention, there is a distinct "forward" and "reverse". However, computers dont
know about this convention, so the "forward" primer is whichever primer has the same sequence
as its binding region in the database (as opposed to the reverse complement). For this reason,
primersearch will redefine which primer is "forward" and which is "reverse" based on how it binds
the reference sequence. See the example code in primersearch_raw for a demonstration of
this.

Value

A copy of the input taxmap object with two tables added. One table contains amplicon information
with one row per predicted amplicon with the following info:

(f_primer)
5' AAGTACCTTAACGGAATTATAG -> (r_primer)

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

^ ^ ^ ^
f_start f_end r_rtart r_end

|--------------------||----||------------------|
f_match amplicon r_match

|--|
product

taxon_id: The taxon IDs for the sequence.

seq_index: The index of the input sequence.

f_primer: The sequence of the forward primer.

r_primer: The sequence of the reverse primer.

f_mismatch: The number of mismatches on the forward primer.

r_mismatch: The number of mismatches on the reverse primer.

f_start: The start location of the forward primer.

f_end: The end location of the forward primer.

r_start: The start location of the reverse primer.

r_end: The end location of the reverse primer.

f_match: The sequence matched by the forward primer.

r_match: The sequence matched by the reverse primer.

amplicon: The sequence amplified by the primers, not including the primers.

product: The sequence amplified by the primers including the primers. This simulates a real PCR
product.

primersearch 55

The other table contains per-taxon information about the PCR, with one row per taxon. It has the
following columns:

taxon_ids: Taxon IDs.

query_count: The number of sequences used as input.

seq_count: The number of sequences that had at least one amplicon.

amp_count: The number of amplicons. Might be more than one per sequence.

amplified: If at least one sequence of that taxon had at least one amplicon.

multiple: If at least one sequences had at least two amplicons.

prop_amplified: The proportion of sequences with at least one amplicon.

med_amp_len: The median amplicon length.

min_amp_len: The minimum amplicon length.

max_amp_len: The maximum amplicon length.

med_prod_len: The median product length.

min_prod_len: The minimum product length.

max_prod_len: The maximum product length.

Installing EMBOSS

The command-line tool "primersearch" from the EMBOSS tool kit is needed to use this function.
How you install EMBOSS will depend on your operating system:

Linux:
Open up a terminal and type:

sudo apt-get install emboss

Mac OSX:
The easiest way to install EMBOSS on OSX is to use homebrew1. After installing homebrew, open
up a terminal and type:

brew install homebrew/science/emboss

Windows:
There is an installer for Windows here:

ftp://emboss.open-bio.org/pub/EMBOSS/windows/mEMBOSS-6.5.0.0-setup.exe

Examples

Not run:
Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

package = "metacoder")

Parse the FASTA file as a taxmap object
obj <- parse_silva_fasta(file = fasta_path)

1http://brew.sh/

56 primersearch_raw

Simulate PCR with primersearch
Have to replace Us with Ts in sequences since primersearch
does not understand Us.
obj <- primersearch(obj,

gsub(silva_seq, pattern = "U", replace = "T"),
forward = c("U519F" = "CAGYMGCCRCGGKAAHACC"),
reverse = c("Arch806R" = "GGACTACNSGGGTMTCTAAT"),
mismatch = 10)

Plot what did not ampilify
obj %>%
filter_taxa(prop_amplified < 1) %>%
heat_tree(node_label = taxon_names,

node_color = prop_amplified,
node_color_range = c("grey", "red", "purple", "green"),
node_color_trans = "linear",
node_color_axis_label = "Proportion amplified",
node_size = n_obs,
node_size_axis_label = "Number of sequences",
layout = "da",
initial_layout = "re")

End(Not run)

primersearch_raw Use EMBOSS primersearch for in silico PCR

Description

A pair of primers are aligned against a set of sequences. The location of the best hits, quality of
match, and predicted amplicons are returned. Requires the EMBOSS tool kit (http://emboss.
sourceforge.net/) to be installed.

Usage

primersearch_raw(input = NULL, file = NULL, forward, reverse,
mismatch = 5)

Arguments

input (character) One of the following:

A character vector of sequences See the example below for what this looks
like. The parser read_fasta produces output like this.

A list of character vectors Each vector should have one base per element.
A "DNAbin" object This is the result of parsers like read.FASTA.
A list of "SeqFastadna" objects This is the result of parsers like read.fasta.

Either "input" or "file" must be supplied but not both.

primersearch_raw 57

file The path to a FASTA file containing sequences to use. Either "input" or "file"
must be supplied but not both.

forward (character of length 1) The forward primer sequence

reverse (character of length 1) The reverse primer sequence

mismatch An integer vector of length 1. The percentage of mismatches allowed.

Details

It can be confusing how the primer sequence relates to the binding sites on a reference database
sequence. A simplified diagram can help. For example, if the top strand below (5’ -> 3’) is the
database sequence, the forward primer has the same sequence as the target region, since it will bind
to the other strand (3’ -> 5’) during PCR and extend on the 3’ end. However, the reverse primer
must bind to the database strand, so it will have to be the complement of the reference sequence. It
also has to be reversed to make it in the standard 5’ -> 3’ orientation. Therefore, the reverse primer
must be the reverse complement of its binding site on the reference sequence.

Primer 1: 5' AAGTACCTTAACGGAATTATAG 3'
Primer 2: 5' GCTCCACCTACGAAACGAAT 3'

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

3' ...TTCATGGAATTGCCTTAATATC......TAAGCAAAGCATCCACCTCG... 5'
5' AAGTACCTTAACGGAATTATAG ->

However, a database might have either the top or the bottom strand as a reference sequence. Since
one implies the sequence of the other, either is valid, but this is another source of confusion. If
we take the diagram above and rotate it 180 degrees, it would mean the same thing, but which
primer we would want to call "forward" and which we would want to call "reverse" would change.
Databases of a single locus (e.g. Greengenes) will likely have a convention for which strand will
be present, so relative to this convention, there is a distinct "forward" and "reverse". However,
computers dont know about this convention, so the "forward" primer is whichever primer has the
same sequence as its binding region in the database (as opposed to the reverse complement). For
this reason, primersearch will redefine which primer is "forward" and which is "reverse" based on
how it binds the reference sequence. See the example code for a demonstration of this.

Value

A table with one row per predicted amplicon with the following info:

(f_primer)
5' AAGTACCTTAACGGAATTATAG -> (r_primer)

<- TAAGCAAAGCATCCACCTCG 5'
5' ...AAGTACCTTAACGGAATTATAG......ATTCGTTTCGTAGGTGGAGC... 3'

^ ^ ^ ^
f_start f_end r_rtart r_end

|--------------------||----||------------------|

58 primersearch_raw

f_match amplicon r_match
|--|

product

f_mismatch: The number of mismatches on the forward primer
r_mismatch: The number of mismatches on the reverse primer
input: The index of the input sequence

Installing EMBOSS

The command-line tool "primersearch" from the EMBOSS tool kit is needed to use this function.
How you install EMBOSS will depend on your operating system:

Linux:

Open up a terminal and type:

sudo apt-get install emboss

Mac OSX:

The easiest way to install EMBOSS on OSX is to use homebrew2. After installing homebrew, open
up a terminal and type:

brew install homebrew/science/emboss

Windows:

There is an installer for Windows here:

ftp://emboss.open-bio.org/pub/EMBOSS/windows/mEMBOSS-6.5.0.0-setup.exe

Examples

Not run:

Dummy test data set

primer_1_site <- "AAGTACCTTAACGGAATTATAG"
primer_2_site <- "ATTCGTTTCGTAGGTGGAGC"
amplicon <- "NNNAGTGGATAGATAGGGGTTCTGTGGCGTTTGGGAATTAAAGATTAGAGANNN"
seq_1 <- paste0("AA", primer_1_site, amplicon, primer_2_site, "AAAA")
seq_2 <- rev_comp(seq_1)
f_primer <- "ACGTACCTTAACGGAATTATAG" # Note the "C" mismatch at position 2
r_primer <- rev_comp(primer_2_site)
seqs <- c(a = seq_1, b = seq_2)

result <- primersearch_raw(seqs, forward = f_primer, reverse = r_primer)

Real data set

Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

2http://brew.sh/

qualitative_palette 59

package = "metacoder")

Parse the FASTA file as a taxmap object
obj <- parse_silva_fasta(file = fasta_path)

Simulate PCR with primersearch
pcr_result <- primersearch_raw(obj$data$tax_data$silva_seq,

forward = c("U519F" = "CAGYMGCCRCGGKAAHACC"),
reverse = c("Arch806R" = "GGACTACNSGGGTMTCTAAT"),
mismatch = 10)

Add result to input table
NOTE: We want to add a function to handle running pcr on a
taxmap object directly, but we are still trying to figure out
the best way to implement it. For now, do the following:
obj$data$pcr <- pcr_result
obj$data$pcr$taxon_id <- obj$datatax_datataxon_id[pcr_result$input]

Visualize which taxa were amplified
This work because only amplicons are returned by `primersearch`
n_amplified <- unlist(obj$obs_apply("pcr",

function(x) length(unique(x)),
value = "input"))

prop_amped <- n_amplified / obj$n_obs()
heat_tree(obj,

node_label = taxon_names,
node_color = prop_amped,
node_color_range = c("grey", "red", "purple", "green"),
node_color_trans = "linear",
node_color_axis_label = "Proportion amplified",
node_size = n_obs,
node_size_axis_label = "Number of sequences",
layout = "da",
initial_layout = "re")

End(Not run)

qualitative_palette
The default qualitative color palette

Description

Returns the default color palette for qualitative data

Usage

qualitative_palette()

60 rarefy_obs

Value

character of hex color codes

Examples

qualitative_palette()

quantative_palette The default quantative color palette

Description

Returns the default color palette for quantative data.

Usage

quantative_palette()

Value

character of hex color codes

Examples

quantative_palette()

rarefy_obs Calculate rarefied observation counts

Description

For a given table in a taxmap object, rarefy counts to a constant total. This is a wrapper around
rrarefy that automatically detects which columns are numeric and handles the reformatting
needed to use tibbles.

Usage

rarefy_obs(obj, data, sample_size = NULL, cols = NULL,
other_cols = FALSE, out_names = NULL, dataset = NULL)

rarefy_obs 61

Arguments

obj A taxmap object

data The name of a table in obj$data.

sample_size The sample size counts will be rarefied to. This can be either a single integer or
a vector of integers of equal length to the number of columns.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups,
counts_to_presence, zero_low_counts

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Rarefy all numeric columns
rarefy_obs(x, "tax_data")

62 read_fasta

Rarefy a subset of columns
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
rarefy_obs(x, "tax_data", cols = 4:6)
rarefy_obs(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
rarefy_obs(x, "tax_data", other_cols = TRUE)

Inlcuding specific columns in output
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

other_cols = 2:3)

Rename output columns
rarefy_obs(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

End(Not run)

read_fasta Read a FASTA file

Description

Reads a FASTA file. This is the FASTA parser for metacoder. It simply tries to read a FASTA file
into a named character vector with minimal fuss. It does not do any checks for valid characters etc.
Other FASTA parsers you might want to consider include read.FASTA or read.fasta.

Usage

read_fasta(file_path)

Arguments

file_path (character of length 1) The path to a file to read.

Value

named character vector

Examples

Get example FASTA file
fasta_path <- system.file(file.path("extdata", "silva_subset.fa"),

package = "metacoder")

Read fasta file
my_seqs <- read_fasta(fasta_path)

reverse 63

reverse Reverse sequences

Description

Find the reverse of one or more sequences stored as a character vector. This is a wrapper for rev
for character vectors instead of lists of character vectors with one value per letter.

Usage

reverse(seqs)

Arguments

seqs A character vector with one element per sequence.

See Also

Other sequence transformations: complement, rev_comp

Examples

reverse(c("aagtgGGTGaa", "AAGTGGT"))

rev_comp Revere complement sequences

Description

Make the reverse complement of one or more sequences stored as a character vector. This is a
wrapper for comp for character vectors instead of lists of character vectors with one value per
letter. IUPAC ambiguity codes are handled and the upper/lower case is preserved.

Usage

rev_comp(seqs)

Arguments

seqs A character vector with one element per sequence.

See Also

Other sequence transformations: complement, reverse

64 write_greengenes

Examples

rev_comp(c("aagtgGGTGaa", "AAGTGGT"))

write_greengenes Write an imitation of the Greengenes database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the Greengenes output
format. If the taxmap object was created using parse_greengenes, then it should be able to
replicate the format exactly with the default settings.

Usage

write_greengenes(obj, tax_file = NULL, seq_file = NULL,
tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("gg_rank")[[1]],
ids = obj$get_data("gg_id")[[1]],
sequences = obj$get_data("gg_seq")[[1]])

Arguments

obj A taxmap object
tax_file (character of length 1) The file path to save the taxonomy file.
seq_file (character of length 1) The file path to save the sequence fasta file. This is

optional.
tax_names (character named by taxon ids) The names of taxa
ranks (character named by taxon ids) The ranks of taxa
ids (character named by taxon ids) Sequence ids
sequences (character named by taxon ids) Sequences

Details

The taxonomy output file has a format like:

228054 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
844608 k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae; o__Synech...
...

The optional sequence file has a format like:

>1111886
AACGAACGCTGGCGGCATGCCTAACACATGCAAGTCGAACGAGACCTTCGGGTCTAGTGGCGCACGGGTGCGTA...
>1111885
AGAGTTTGATCCTGGCTCAGAATGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGTACGAGAAATCCCGAGC...
...

write_mothur_taxonomy 65

See Also

Other writers: make_dada2_asv_table, make_dada2_tax_table, write_mothur_taxonomy,
write_rdp, write_silva_fasta, write_unite_general

write_mothur_taxonomy
Write an imitation of the Mothur taxonomy file

Description

Attempts to save taxonomic information of a taxmap object in the mothur ‘*.taxonomy‘ format.
If the taxmap object was created using parse_mothur_taxonomy, then it should be able to
replicate the format exactly with the default settings.

Usage

write_mothur_taxonomy(obj, file,
tax_names = obj$get_data("taxon_names")[[1]],
ids = obj$get_data("sequence_id")[[1]], scores = NULL)

Arguments

obj A taxmap object

file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

ids (character named by taxon ids) Sequence ids

scores (numeric named by taxon ids)

Details

The output file has a format like:

AY457915 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457914 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457913 Bacteria(100);Firmicutes(100);Clostridiales(100);Johnso...
AY457912 Bacteria(100);Firmicutes(99);Clostridiales(99);Johnsone...
AY457911 Bacteria(100);Firmicutes(99);Clostridiales(98);Ruminoco...

or...

AY457915 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457914 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457913 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457912 Bacteria;Firmicutes;Clostridiales;Johnsonella_et_rel.;J...
AY457911 Bacteria;Firmicutes;Clostridiales;Ruminococcus_et_rel.;...

66 write_rdp

See Also

Other writers: make_dada2_asv_table, make_dada2_tax_table, write_greengenes,
write_rdp, write_silva_fasta, write_unite_general

write_rdp Write an imitation of the RDP FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the RDP FASTA for-
mat. If the taxmap object was created using parse_rdp, then it should be able to replicate the
format exactly with the default settings.

Usage

write_rdp(obj, file, tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("rdp_rank")[[1]],
ids = obj$get_data("rdp_id")[[1]],
info = obj$get_data("seq_name")[[1]],
sequences = obj$get_data("rdp_seq")[[1]])

Arguments

obj A taxmap object
file (character of length 1) The file path to save the sequence fasta file. This is

optional.
tax_names (character named by taxon ids) The names of taxa
ranks (character named by taxon ids) The ranks of taxa
ids (character named by taxon ids) Sequence ids
info (character named by taxon ids) Info associated with sequences. In the ex-

ample output shown here, this field corresponds to "Sparassis crispa; MBUH-
PIRJO&ILKKA94-1587/ss5"

sequences (character named by taxon ids) Sequences

Details

The output file has a format like:

>S000448483 Sparassis crispa; MBUH-PIRJO&ILKKA94-1587/ss5 Lineage=Root;rootrank;Fun...
ggattcccctagtaactgcgagtgaagcgggaagagctcaaatttaaaatctggcggcgtcctcgtcgtccgagttgtaa
tctggagaagcgacatccgcgctggaccgtgtacaagtctcttggaaaagagcgtcgtagagggtgacaatcccgtcttt
...

See Also

Other writers: make_dada2_asv_table, make_dada2_tax_table, write_greengenes,
write_mothur_taxonomy, write_silva_fasta, write_unite_general

write_silva_fasta 67

write_silva_fasta Write an imitation of the SILVA FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the SILVA FASTA
format. If the taxmap object was created using parse_silva_fasta, then it should be able to
replicate the format exactly with the default settings.

Usage

write_silva_fasta(obj, file,
tax_names = obj$get_data("taxon_names")[[1]],
other_names = obj$get_data("other_name")[[1]],
ids = obj$get_data("ncbi_id")[[1]],
start = obj$get_data("start_pos")[[1]],
end = obj$get_data("end_pos")[[1]],
sequences = obj$get_data("silva_seq")[[1]])

Arguments

obj A taxmap object

file (character of length 1) The file path to save the sequence fasta file. This is
optional.

tax_names (character named by taxon ids) The names of taxa

other_names (character named by taxon ids) Alternate names of taxa. Will be added after
the primary name.

ids (character named by taxon ids) Sequence ids

start (character) The start position of the sequence.

end (character) The end position of the sequence.

sequences (character named by taxon ids) Sequences

Details

The output file has a format like:

>GCVF01000431.1.2369 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospiril...
CGUGCACGGUGGAUGCCUUGGCAGCCAGAGGCGAUGAAGGACGUUGUAGCCUGCGAUAAGCUCCGGUUAGGUGGCAAACA
ACCGUUUGACCCGGAGAUCUCCGAAUGGGGCAACCCACCCGUUGUAAGGCGGGUAUCACCGACUGAAUCCAUAGGUCGGU
...

See Also

Other writers: make_dada2_asv_table, make_dada2_tax_table, write_greengenes,
write_mothur_taxonomy, write_rdp, write_unite_general

68 write_unite_general

write_unite_general
Write an imitation of the UNITE general FASTA database

Description

Attempts to save taxonomic and sequence information of a taxmap object in the UNITE general
FASTA format. If the taxmap object was created using parse_unite_general, then it should
be able to replicate the format exactly with the default settings.

Usage

write_unite_general(obj, file,
tax_names = obj$get_data("taxon_names")[[1]],
ranks = obj$get_data("unite_rank")[[1]],
sequences = obj$get_data("unite_seq")[[1]],
seq_name = obj$get_data("organism")[[1]],
ids = obj$get_data("unite_id")[[1]],
gb_acc = obj$get_data("acc_num")[[1]],
type = obj$get_data("unite_type")[[1]])

Arguments

obj A taxmap object
file (character of length 1) The file path to save the sequence fasta file. This is

optional.
tax_names (character named by taxon ids) The names of taxa
ranks (character named by taxon ids) The ranks of taxa
sequences (character named by taxon ids) Sequences
seq_name (character named by taxon ids) Name of sequences. Usually a taxon name.
ids (character named by taxon ids) UNITE sequence ids
gb_acc (character named by taxon ids) Genbank accession numbers
type (character named by taxon ids) What type of sequence it is. Usually "rep"

or "ref".

Details

The output file has a format like:

>Glomeromycota_sp|KJ484724|SH523877.07FU|reps|k__Fungi;p__Glomeromycota;c__unid...
ATAATTTGCCGAACCTAGCGTTAGCGCGAGGTTCTGCGATCAACACTTATATTTAAAACCCAACTCTTAAATTTTGTAT...
...

See Also

Other writers: make_dada2_asv_table, make_dada2_tax_table, write_greengenes,
write_mothur_taxonomy, write_rdp, write_silva_fasta

zero_low_counts 69

zero_low_counts Replace low counts with zero

Description

For a given table in a taxmap object, convert all counts below a minimum number to zero. This is
useful for effectively removing "singletons", "doubletons", or other low abundance counts.

Usage

zero_low_counts(obj, data, min_count = 2, use_total = FALSE,
cols = NULL, other_cols = FALSE, out_names = NULL,
dataset = NULL)

Arguments

obj A taxmap object

data The name of a table in obj$data.

min_count The minimum number of counts needed for a count to remain unchanged. Any
could less than this will be converted to a zero. For example, min_count = 2
would remove singletons.

use_total If TRUE, the min_count applies to the total count for each row (e.g. OTU
counts for all samples), rather than each cell in the table. For example use_total
= TRUE,min_count = 10 would convert all counts of any row to zero if the
total for all counts in that row was less than 10.

cols The columns in data to use. By default, all numeric columns are used. Takes
one of the following inputs:

TRUE/FALSE: All/No columns will used.
Character vector: The names of columns to use
Numeric vector: The indexes of columns to use
Vector of TRUE/FALSE of length equal to the number of columns: Use the

columns corresponding to TRUE values.

other_cols Preserve in the output non-target columns present in the input data. New columns
will always be on the end. The "taxon_id" column will be preserved in the front.
Takes one of the following inputs:

NULL: No columns will be added back, not even the taxon id column.
TRUE/FALSE: All/None of the non-target columns will be preserved.
Character vector: The names of columns to preserve
Numeric vector: The indexes of columns to preserve
Vector of TRUE/FALSE of length equal to the number of columns: Preserve

the columns corresponding to TRUE values.

out_names The names of count columns in the output. Must be the same length and order
as cols (or unique(groups), if groups is used).

dataset DEPRECIATED. use "data" instead.

70 zero_low_counts

Value

A tibble

See Also

Other calculations: calc_group_mean, calc_group_median, calc_group_rsd, calc_group_stat,
calc_n_samples, calc_obs_props, calc_prop_samples, calc_taxon_abund, compare_groups,
counts_to_presence, rarefy_obs

Examples

Not run:
Parse data for examples
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",

class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")

Default use
zero_low_counts(x, "tax_data")

Use only a subset of columns
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"))
zero_low_counts(x, "tax_data", cols = 4:6)
zero_low_counts(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001"))

Including all other columns in ouput
zero_low_counts(x, "tax_data", other_cols = TRUE)

Inlcuding specific columns in output
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

other_cols = 2:3)

Rename output columns
zero_low_counts(x, "tax_data", cols = c("700035949", "700097855", "700100489"),

out_names = c("a", "b", "c"))

End(Not run)

