multiColl: Collinearity Detection in a Multiple Linear Regression Model

The detection of worrying approximate collinearity in a multiple linear regression model is a problem addressed in all existing statistical packages. However, we have detected deficits regarding to the incorrect treatment of qualitative independent variables and the role of the intercept of the model. The objective of this package is to correct these deficits. In this package will be available detection and treatment techniques traditionally used as the recently developed. D.A. Belsley (1982) <doi:10.1016/0304-4076(82)90020-3>. D. A. Belsley (1991, ISBN: 978-0471528890). C. Garcia, R. Salmeron and C.B. Garcia (2019) <doi:10.1080/00949655.2018.1543423>. R. Salmeron, C.B. Garcia and J. Garcia (2018) <doi:10.1080/00949655.2018.1463376>. G.W. Stewart (1987) <doi:10.1214/ss/1177013444>.

Version: 1.0
Published: 2019-07-18
Author: R. Salmeron, C.B. Garcia and J. Garcia
Maintainer: R. Salmeron <romansg at ugr.es>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: http://colldetreat.r-forge.r-project.org/
NeedsCompilation: no
CRAN checks: multiColl results

Downloads:

Reference manual: multiColl.pdf
Package source: multiColl_1.0.tar.gz
Windows binaries: r-devel: multiColl_1.0.zip, r-release: multiColl_1.0.zip, r-oldrel: multiColl_1.0.zip
OS X binaries: r-release: multiColl_1.0.tgz, r-oldrel: multiColl_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=multiColl to link to this page.